Use Data Mining to Improve Genetic Algorithm Efficiency for a Job Shop Scheduling Problem
نویسنده
چکیده
This paper proposes a new improved Genetic Algorithm (GA) by utilizing a Data Mining technique, and demonstrates how it is superior to traditional GA on a popular job shop scheduling problem. GA has long been widely applied to solve complex optimization problems in a good variety of areas. It has advantages of adaptive capability, efficient search, potential to avoid local optimum, etc. In recent literature, researchers have proposed a good number of new GAs by combining basic GA with other techniques, such as heuristic rules, simulated annealing, neural networks, fuzzy sets, and so on, in order to improve the efficiency for various optimization problems. Data mining is a new evolving technology for knowledge extraction, classification, clustering, estimation, etc. The capability of finding frequent patterns in large data set is the key reason why it is integrated with GA in this research. Due to the fundamental concept of GA’s randomness during evolution, a traditional GA may become less efficient in search for optimum. By embedding the frequent schemata into the GA evolution process, the new improved GA could reduce the search time by preserving segments of good solutions without accidentally being lost due to random crossover or mutation. The proposed new GA was experimented on a popular 6x6 job shop scheduling problem. The results have shown its better efficiency than traditional GAs and potential for further research works.
منابع مشابه
Solving the flexible job shop problem by hybrid metaheuristics-based multiagent model
The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem that allows to process operations on one machine out of a set of alternative machines. The FJSP is an NP-hard problem consisting of two sub-problems, which are the assignment and the scheduling problems. In this paper, we propose how to solve the FJSP by hybrid metaheuristics-based c...
متن کاملFlow Shop Scheduling Problem with Missing Operations: Genetic Algorithm and Tabu Search
Flow shop scheduling problem with missing operations is studied in this paper. Missing operations assumption refers to the fact that at least one job does not visit one machine in the production process. A mixed-binary integer programming model has been presented for this problem to minimize the makespan. The genetic algorithm (GA) and tabu search (TS) are used to deal with the optimization...
متن کاملA New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm
This paper presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable...
متن کاملA New Approach in Job Shop Scheduling: Overlapping Operation
In this paper, a new approach to overlapping operations in job shop scheduling is presented. In many job shops, a customer demand can be met in more than one way for each job, where demand determines the quantity of each finished job ordered by a customer. In each job, embedded operations can be performed due to overlapping considerations in which each operation may be overlapped with the other...
متن کاملAn integrated approach for scheduling flexible job-shop using teaching–learning-based optimization method
In this paper, teaching–learning-based optimization (TLBO) is proposed to solve flexible job shop scheduling problem (FJSP) based on the integrated approach with an objective to minimize makespan. An FJSP is an extension of basic job-shop scheduling problem. There are two sub problems in FJSP. They are routing problem and sequencing problem. If both the sub problems are solved simultaneously, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001